Retail Rate Design in the Face of Growing Distributed Energy Resources

David Brown Associate Professor University of Alberta Department of Economics

Residential DER Growth

Annual net DER capacity change by DER market segment

Source: Wood Mackenzie Energy Storage Service, Grid Edge Service, and US Distributed Solar Service

* - "Net" DER capacity additions includes the negative impact of falling non-residential load management DER capacity on the annual totals

Source: Wood Mackenzie (2020) – U.S. DER Outlook: 2016 – 2025E

Net Metering Challenges

- Net Metering: Behind-the-meter DER production (and consumption) is often paid the prevailing retail rate
- Issue: Existing retail tariffs are simplistic with time-invariant volumetric (¢ per-KWh) charges and limited fixed charges
 - Somewhat alleviated by TOU pricing, but still not perfect
 - Calls to raise fixed charges (raises equity concerns)
- Implications:
 - Poor mismatch with the underlying costs of energy services
 - Over or under compensation of distributed solar (and other DERs) →
 Distortions on the *intensive* and *extensive* margin
 - Cost-Shifting concerns
 - Rate design problems magnified with distributed batteries and EVs

Value of DERs

Table 4. Potential Benefits of DERs.

Perspective	Category	Benefit
Electricity system stakeholders (i.e., utilities and their customers, including DER owners)	Bulk power system	Avoided energy costs
		Avoided generation capacity costs
		Avoided reserves and ancillary services costs
		Avoided transmission capital costs and line loss
		Avoided financial risk of primary energy source price volatility
		Avoided environmental compliance costs
	Distribution system	Avoided distribution capital costs and line losses
Society	Public health and safety	Improved resilience to disruptive hazards and stressors
		Public health benefits of avoided local pollution
	Environmental	Environmental benefits of avoided local pollution
		Avoided greenhouse gas emissions

Source: Gundlach and Unel (2019)

Time Value – Hourly and Seasonal: Southern Cal. Edison Avoided Marginal Cost

(a) Total Marginal Avoided Cost (\$/KWh)

Source: Boampong and Brown (2020)

Dist. Spatial Value – Location, Location, Location

Locational Net Benefit Analysis

Integration/Host Capacity Analysis

Source: SCE (2020)

Retail Rate Design Example - VDER

- "Value Stack" (EX: New York)
 - Energy (LMP) [Hourly]
 - Generation Capacity (ICAP) [month year]
 - Environmental (E) [Hourly 25 years]
 - T&D Capacity [1 10 years]
- The Good:
 - Better approximates value and costs of DERs
 - Capacity measures can capture local constraints
 - Reduces cost-shifting + "death spiral"
- The Bad:
 - Complicated and controversial valuations
 - Smooths over too much (time + spatially)
 - Locks-in rates for 1 25 years

Source: Gundlach and Unel (2019)

Key Challenges Going Forward

- 1. Information
 - Need increased transparency on grid-value and costs of DERs
 - Where are DERs located on the grid?
- 2. Model Costs/Benefits → Rates
 - − Challenges of mapping modeled benefits/costs → Rates
- 3. Balancing Economic Efficiency + Fairness/Gradualism
 - Movement to more efficient tariffs can result in big changes
 - Winners + Losers \rightarrow value of pre-emptive policy action
- 4. Stranded Cost Recovery
 - − Emerging technologies → stranded assets
 - How do we allocate these costs?

Electric Vehicles + The Duck Curve

Simulated EV Loads

CAISO Duck Curve

CAISO's 'duck curve' shows need for steep ramp-up in generation as solar fades Based on actual net demand March 27, 2020 (MW) _____Demand (5 minute average) _____ Net demand

California ISO defines net demand as total load minus wind and solar generation. Source: California ISO

Source: CEC (2018)

Thank You!

Email: dpbrown@ualberta.ca

Website: https://apps.ualberta.ca/directory/person/dpbrown

References

Boampong, R. and D. Brown (2020). ``On the Network Value of Behind-the-Meter Solar PV Plus Energy Storage: The Importance of Retail Rate Design," *Energy Economics*.

CEC (2018). California Plug-In Electric Vehicle Infrastructure Projections: 2017 – 2025. California Energy Commission. CEC – 600 – 2018 – 001.

Gundlach, J. and B. Unel (2019). "Getting the Value of Distributed Energy Resources Right: Using a Societal Value Stack," Institute for Policy Integrity, New York University School of Law.

SCE (2020). Southern California Edison Distribution Resources Plan (DRP) External Portal. Available at: https://ltmdrpep.sce.com/drpep/

Wood Mackenzie (2020). United States Distributed Energy Resources Outlook: DER Installations and Forecasts 2016 – 2025E. Available at:

